Respuesta :

Answer:

[tex]\sf \dfrac{3}{{z-3} }[/tex]

Explanation:

[tex]\Longrightarrow \sf \dfrac{1}{z} \div \dfrac{z-3}{3z}[/tex]

apply the theorem when [tex]\dfrac{a}{b} \div \dfrac{c}{d}[/tex] then [tex]\dfrac{a}{b} \times \dfrac{d}{c}[/tex]

[tex]\Longrightarrow \sf \dfrac{1}{z} \times \dfrac{3z}{z-3}[/tex]

Join the fractions

[tex]\Longrightarrow \sf \dfrac{3z}{z({z-3)} }[/tex]

Cancel out common factor z

[tex]\Longrightarrow \sf \dfrac{3}{{z-3} }[/tex]

The answer is : [tex]\boxed {\frac{3}{z-3}}[/tex]

Remember that dividing fractions is the same as multiplying the 1st fraction by the reciprocal of the other.

[tex]\mathsf {\frac{1}{z} \div \frac{z-3}{3z}}[/tex]

[tex]\mathsf {\frac{1}{z} \times \frac{3z}{z - 3}}[/tex]

[tex]\mathsf {\frac{3}{z-3}}[/tex]