what is the polar form of -3+ v3i?

So
[tex]\\ \rm\Rrightarrow r=\sqrt{a^2+b^2}[/tex]
[tex]\\ \rm\Rrightarrow r=\sqrt{(-3)^2+(\sqrt{3})^2}[/tex]
[tex]\\ \rm\Rrightarrow r=\sqrt{9+3}[/tex]
[tex]\\ \rm\Rrightarrow r=\sqrt{12}[/tex]
[tex]\\ \rm\Rrightarrow r=2\sqrt{3}[/tex]
Find theta
[tex]\\ \rm\Rrightarrow \theta=tan^{-1}(\dfrac{y}{x})[/tex]
[tex]\\ \rm\Rrightarrow \theta=tan^{-1}(\dfrac{\sqrt{3}}{3})[/tex]
[tex]\\ \rm\Rrightarrow \theta=tan^{-1}(\dfrac{-1}{\sqrt{3}})[/tex]
[tex]\\ \rm\Rrightarrow \theta=\dfrac{5\pi}{6}[/tex]
Polar form
[tex]\\ \rm\Rrightarrow r(cos\theta+isin\theta)[/tex]
[tex]\\ \rm\Rrightarrow 2\sqrt{3}(cos\dfrac{5\pi}{6}+isin\dfrac{5\pi}{6})[/tex]