Respuesta :
Answer:
y = -4(x +2)² + 7
formula for parabola: y = a(x-h)² + k
Where (h, k) denotes the vertex
- vertex: (-2, 7)
- point: (-1, 3)
First find a:
- 3 = a(-1-(-2))² + 7
- a + 7 = 3
- a = -4
Thus equation:
- y = -4(x-(-2))² + 7
- y = -4(x +2)² + 7

Answer:
y = -4x^2 - 16x - 9.
Step-by-step explanation:
The vertex form is:
y = a(x - b)^2 + c where a is a constant, and (b, c) is the vertex
So we have
y = a(x + 2)^2 + 7
When x = -1, y = 3 so:
3 = a(-1 + 2)^2 + 7
3 = a + 7
a = -4.
So the equation is
y = -4(x + 2)^2 + 7
y = -4x^2 - 16x -16 + 7
y = -4x^2 - 16x - 9.