Respuesta :
Answer: x>2
Step-by-step explanation:
[tex]4x+\frac{1}{2} (2x+4) > 12[/tex]
Step 1: Simplify both sides of the inequality through the Distributive Property
[tex]4x+\frac{1}{2} (2x+4) > 12\\4x+(\frac{1}{2})(2x)+(\frac{1}{2})(4) > 12\\4x+x+2 > 12\\5x+2 > 12[/tex]
Step 2: Subtract 2 from both sides to isolate x
[tex]5x+2-2 > 12-2\\5x > 10[/tex]
Step 3: Divide both sides by 5 to full isolate x
[tex]\frac{5x}{5} > \frac{10}{5} \\x > 2[/tex]
Answer:
[tex]x > 2[/tex]
Step-by-step explanation:
[tex]4x+\frac{1}{2}(2x+4) > 12 < ==multiply\ the\ \#s\ in\ the\ parenthesis\ first\ using\ \frac{1}{2}\\\\4x+x+2 > 12 < ==combine\ any\ like\ terms\\\\5x+2 > 12 < ==subtract\ 2\ from\ both\ sides\\-2 \ \ \ \ \ -2\\\\5x > 10 < ==divide\ both\ sides\ by\ 5\\/5 \ \ \ \ /5\\\\x > 2[/tex]
This means that x can be any value that is greater than 2.
Hope this helps!