Respuesta :

Answer:

68

Given:

  • x - 5 = y  ........ eq 1
  • xy + 4 = 0   ...... eq 2

Substitute equation 1 into 2

  • x(x - 5) + 4 = 0
  • x² - 5x + 4 = 0
  • x² - 4x - x + 4 = 0
  • x(x-4) -1(x-4) = 0
  • (x-4)(x-1) = 0
  • x = 1, 4

Find y:

y = x - 5

y = 1 - 5     (when x is 1)

y = -4

========

y = x - 5

y = 4 - 5        (when x is 4)

y = -1

Then 4x² + 4y²:

  • 4(1)² + 4(-4)²
  • 4 + 64
  • 68

Answer:

68

Step-by-step explanation:

[tex]\textsf{Equation 1}:\:x-5=y[/tex]

[tex]\textsf{Equation 2}:\:xy+4=0[/tex]

Substitute Equation 1 into Equation 2:

[tex]\implies x(x-5)+4=0[/tex]

[tex]\implies x^2-5x+4=0[/tex]

Factorize:

[tex]\implies (x-1)(x-4)=0[/tex]

Therefore:

[tex]x=1, x=4[/tex]

Substitute found values of [tex]x[/tex] into Equation 1 and solve for [tex]y[/tex]:

[tex]x=1\implies 1-5=-4[/tex]

[tex]x=4\implies 4-5=-1[/tex]

Substitute found values into [tex]4x^2+4y^2[/tex] and solve:

[tex]\textsf{For}\:(1,-4)\implies 4(1)^2+4(-4)^2=68[/tex]

[tex]\textsf{For}\:(4,-1)\implies 4(4)^2+4(-1)^2=68[/tex]

Note:  As [tex]4x^2+4y^2[/tex], the values of x and y can be interchanged, so no need to input both sets of ordered pairs into the equation to solve.