Respuesta :
Answer:
See below ↓↓
Step-by-step explanation:
Given function
- h = 3 + 44t - 16t²
We need to calculate the possible values of t at h = 23 feet.
Subsituting h = 23,
- 23 = 3 + 44t - 16t²
- 16t² - 44t + 20 = 0
- Divide throughout by 4 as it is a common factor
- 4t² - 11t + 5 = 0
Solving for 't' using quadratic formula
- t = 11 ± √121 - 4(4)(5) / 8
- t = 11 ± √41 / 8
Solutions
- t = 11 + 6.4 / 8 = 17.4/8 = 2.175 seconds
- t = 11 - 6.4 / 8 = 4.6/8 = 0.575 seconds
Answer:
t = 2.175 s (3 dp)
t = 0.575 s (3 dp)
Step-by-step explanation:
Given equation: [tex]h=3+44t-16t^2[/tex]
To find all values of t for which the ball's height is 23 ft, substitute h = 20 into the equation and solve for t:
[tex]\implies h=23[/tex]
[tex]\implies 3+44t-16t^2=23[/tex]
[tex]\implies 16t^2-44t-3+23=0[/tex]
[tex]\implies 16t^2-44t+20=0[/tex]
Factor out common term 4:
[tex]\implies 4(4t^2-11t+5)=0[/tex]
Divide both sides by 4:
[tex]\implies 4t^2-11t+5=0[/tex]
Quadratic formula
[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when}\:ax^2+bx+c=0[/tex]
Use the quadratic formula to solve for t:
[tex]\implies t=\dfrac{-(-11) \pm \sqrt{(-11)^2-4(4)(5)} }{2(4)}[/tex]
[tex]\implies t=\dfrac{11 \pm \sqrt{41}}{8}[/tex]
Therefore,
- t = 2.175 s (3 dp)
- t = 0.575 s (3 dp)