Respuesta :

Answer:

6(y - 3)(2y + 5)

Step-by-step explanation:

12y^2 - 6y - 90

Factorize

6(2y^2 - y - 15)

Split the term

6(2y^2 - 6y + 5y - 15)

Regroup terms

6((2y^2 - 6y) + (5y - 15))

Factorize

6((2y(y - 3) + 5( y - 3))

Factorize

6(y - 3)(2y + 5)

Answer:

[tex]6(y-3)(2y+5)[/tex]

Step-by-step explanation:

[tex]12y^2-6y-90[/tex]

First, factor out the common term of 6:

[tex]\implies 6(2y^2-y-15)[/tex]

To factor [tex](2y^2-y-15)[/tex]:

Multiply the coefficient of [tex]y^2[/tex] by the constant:

[tex]\implies 2 \times -15 = -30[/tex]

Now find factors of -30 that sum to the coefficient of [tex]-y[/tex], i.e. -1

Factors of 30:  1, 2, 3, 5, 6, 10, 15, 30

So factors of -30 that sum of -1 are:  -6 and 5

Rewrite the middle term of [tex](2y^2-y-15)[/tex] as [tex]-6y + 5y[/tex]:

[tex]\implies 2y^2-6y+5y-15[/tex]

Factor each pair of terms:

[tex]\implies 2y(y-3)+5(y-3)[/tex]

Factor out the constant term:

[tex]\implies (y-3)(2y+5)[/tex]

Therefore, the final factorization is:

[tex]\implies 6(y-3)(2y+5)[/tex]