Respuesta :
Answer:
6(y - 3)(2y + 5)
Step-by-step explanation:
12y^2 - 6y - 90
Factorize
6(2y^2 - y - 15)
Split the term
6(2y^2 - 6y + 5y - 15)
Regroup terms
6((2y^2 - 6y) + (5y - 15))
Factorize
6((2y(y - 3) + 5( y - 3))
Factorize
6(y - 3)(2y + 5)
Answer:
[tex]6(y-3)(2y+5)[/tex]
Step-by-step explanation:
[tex]12y^2-6y-90[/tex]
First, factor out the common term of 6:
[tex]\implies 6(2y^2-y-15)[/tex]
To factor [tex](2y^2-y-15)[/tex]:
Multiply the coefficient of [tex]y^2[/tex] by the constant:
[tex]\implies 2 \times -15 = -30[/tex]
Now find factors of -30 that sum to the coefficient of [tex]-y[/tex], i.e. -1
Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
So factors of -30 that sum of -1 are: -6 and 5
Rewrite the middle term of [tex](2y^2-y-15)[/tex] as [tex]-6y + 5y[/tex]:
[tex]\implies 2y^2-6y+5y-15[/tex]
Factor each pair of terms:
[tex]\implies 2y(y-3)+5(y-3)[/tex]
Factor out the constant term:
[tex]\implies (y-3)(2y+5)[/tex]
Therefore, the final factorization is:
[tex]\implies 6(y-3)(2y+5)[/tex]