The amount of substance left after n half cycle of caesium is given by -
[tex]\green{ \underline { \boxed{ \sf{N_t= \frac{N_o}{2^n}}}}}[/tex]
where
[tex]\green{ \underline { \boxed{ \sf{Number \: of \: half \:cycle = \frac{Given\:Time \: period}{Period \: of \: half \:cycle}}}}}[/tex]
[tex]\begin{gathered}\\\implies\quad \sf Number \: of \: half \:cycle = \frac{90.9}{30.3}\\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf Number \: of \: half \:cycle = 3 \\\end{gathered} [/tex]
Now,
[tex]\begin{gathered}\\\implies\quad \sf N_t= \frac{N_o}{2^n} \\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf N_t= \frac{60}{2^3} \\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf N_t= \frac{\cancel{60}}{\cancel{8}} \\\end{gathered} [/tex]
[tex]\begin{gathered}\\\implies\quad \sf N_t= 12.5 g \\\end{gathered} [/tex]
Therefore, 12.5 gram of cesium would be left over 90.9 years.