Respuesta :

Answer:

[tex]\huge\boxed{\sf 8 + 4\sqrt{2} \ cm }[/tex]

Step-by-step explanation:

[tex]\theta = 45 \textdegree[/tex]

opposite = 4 cm

Using tan first to find the adjacent side:

[tex]\displaystyle tan \theta = \frac{opposite}{adjacent} \\\\tan \ 45 = \frac{4}{adjacent}\\\\1 = \frac{4}{adjacent} \\\\Multiply \ 'adjacent' \ to \ both \ sides\\\\adjacent = 4 \ cm[/tex]

Finding Hypotenuse now by using Pythagorean theorem:

[tex](Hyp)^2 = (base)^2 + (perp)^2[/tex]

where base = 4, hyp = 4

(Hyp)² = (4)² + (4)²

(Hyp)² = 16 + 16

(Hyp)² = 32

Take sqrt on both sides

[tex]Hyp = 4\sqrt{2}[/tex] cm

Exact perimeter of triangle:

= base + perpendicular + hypotenuse

= 4 + 4 + 4√2

= [tex]8 + 4\sqrt{2}[/tex] cm

[tex]\rule[225]{225}{2}[/tex]