Respuesta :

Step-by-step explanation:

If the question is like this,

[tex] \tan( \frac{\pi}{3}x - 3 ) = 0[/tex]

We take the arc tan of both sides.

[tex] \tan( - 1) ( \tan( \frac{\pi}{3}x - 3 ) = \tan {}^{ - 1} ( {}^{ }0 ) [/tex]

[tex] \frac{\pi}{3} x - 3 = 0[/tex]

[tex] \frac{\pi}{3} x = 3[/tex]

[tex] = \frac{9}{\pi} [/tex]

Since the period of a tan function, is pi, we divide pi by pi/3 since pi/3is the coeffeicent of the x variable

[tex] \frac{\pi}{ \frac{\pi}{3} } = 3[/tex]

So the answer is

[tex] \frac{9}{\pi} + 3n[/tex]

If this the question,

[tex] \tan( \frac{\pi}{3} x) = 3[/tex]

[tex] \frac{\pi}{3} x = 1.249[/tex]

[tex]x = \frac{3.747}{\pi} [/tex]

The period is once again 3 so we have

[tex] \frac{3.747}{\pi} + 3n[/tex]

where n is a interger.