Answer:
[tex] \frac{1 - 2 {x}^{2} -2x }{ 2x + 2} [/tex]
Step-by-step explanation:
[tex] \frac{2}{4x + 4} - \frac{2x}{2} [/tex]
[tex] = \frac{2 \times 2}{(4x + 4) \times 2} - \frac{(2x) \times (4x + 4) }{2 \times (4x + 4)} [/tex]
[tex] = \frac{4}{8x + 8} - \frac{8 {x}^{2} + 8x }{8x + 8} [/tex]
[tex] = \frac{4 - (8 {x}^{2} + 8x) }{8x + 8} [/tex]
[tex] = \frac{4 - 8 {x}^{2} - 8x }{8x + 8} [/tex]
[tex] = \frac{4 \times (1 - 2 {x}^{2} -2x ) }{4 \times (2x + 2)} [/tex]
[tex] = \frac{1 - 2 {x}^{2} -2x }{ 2x + 2} [/tex]