First of all we will divide the figure in two shapes. One is hemisphere and other is a cuboid.
Volume of hemisphere:
[tex] \boxed{ \tt \:v = \frac{2}{3} \pi {r}^{3} }[/tex]
Volume of cuboid:
[tex] \boxed{ \tt \: v = length \times breadth \times height}[/tex]
[tex]\red{ \rule{35pt}{2pt}} \orange{ \rule{35pt}{2pt}} \color{yellow}{ \rule{35pt} {2pt}} \green{ \rule{35pt} {2pt}} \blue{ \rule{35pt} {2pt}} \purple{ \rule{35pt} {2pt}}[/tex]
Volume of the hemisphere ⤵️
[tex] \sf \dashrightarrow \: v = \frac{2}{3} \times \frac{22}{7} \times {3}^{3} [/tex]
[tex] \sf \dashrightarrow \: v = \frac{2}{ \cancel3} \times \frac{22}{7} \times \cancel{27}[/tex]
[tex] \sf \dashrightarrow \: v = 2 \times \frac{22}{7} \times 9[/tex]
[tex] \sf \dashrightarrow \: v = \frac{396}{7} [/tex]
[tex] \sf \dashrightarrow \: v = 56.6 \: {cm}^{3} [/tex]
Volume of the cuboid ⤵️
- Length = 8cm
- Breadth = 10cm
- Height = 4cm
[tex] \bf \multimap \: v = 8 \times 10 \times 4[/tex]
[tex] \bf \multimap \: v = 80 \times 4[/tex]
[tex] \bf \multimap \: v = 320 \: {cm}^{3} [/tex]
Now, Total volume ↯
[tex] \rm \leadsto \: total \: volume = 56.6 + 320 \: {cm}^{3} [/tex]
[tex] \rm \leadsto \: total \: volume = 376.6\: {cm}^{3} [/tex]
If we round to the nearest tenth the total volume is ᭄
[tex] \rm \twoheadrightarrow volume = 380 \: {cm}^{3} [/tex]