TNOKK
contestada

Look at the picture to answer.
Find the volume of the composite figure. Round the answer to the nearest tenth.


Volume = ____cm3

Look at the picture to answer Find the volume of the composite figure Round the answer to the nearest tenth Volume cm3 class=

Respuesta :

Answer:

around 433.1 cm

find the first shape's volume.

L x W x H method.

[tex]4 * 10 * 8 = 320cm[/tex]

Length is eight, height is 4, and width is 10.

Now, the 2nd shape.

The formula of finding a sphere with a radius of 3 is V = 4/3[tex]pi^3[/tex]

In that case, the answer should be an estimated 113.1

Add the two cm's together.

[tex]320 + 113.1 = 433.1[/tex]

Please note that this is rounded to tenths place and estimated.

Please mark brainliest. Thanks! :)

First of all we will divide the figure in two shapes. One is hemisphere and other is a cuboid.

Volume of hemisphere:

[tex] \boxed{ \tt \:v = \frac{2}{3} \pi {r}^{3} }[/tex]

Volume of cuboid:

[tex] \boxed{ \tt \: v = length \times breadth \times height}[/tex]

[tex]\red{ \rule{35pt}{2pt}} \orange{ \rule{35pt}{2pt}} \color{yellow}{ \rule{35pt} {2pt}} \green{ \rule{35pt} {2pt}} \blue{ \rule{35pt} {2pt}} \purple{ \rule{35pt} {2pt}}[/tex]

Volume of the hemisphere ⤵️

  • r = 3
  • pi = 22/7

[tex] \sf \dashrightarrow \: v = \frac{2}{3} \times \frac{22}{7} \times {3}^{3} [/tex]

[tex] \sf \dashrightarrow \: v = \frac{2}{ \cancel3} \times \frac{22}{7} \times \cancel{27}[/tex]

[tex] \sf \dashrightarrow \: v = 2 \times \frac{22}{7} \times 9[/tex]

[tex] \sf \dashrightarrow \: v = \frac{396}{7} [/tex]

[tex] \sf \dashrightarrow \: v = 56.6 \: {cm}^{3} [/tex]

Volume of the cuboid ⤵️

  • Length = 8cm
  • Breadth = 10cm
  • Height = 4cm

[tex] \bf \multimap \: v = 8 \times 10 \times 4[/tex]

[tex] \bf \multimap \: v = 80 \times 4[/tex]

[tex] \bf \multimap \: v = 320 \: {cm}^{3} [/tex]

Now, Total volume ↯

[tex] \rm \leadsto \: total \: volume = 56.6 + 320 \: {cm}^{3} [/tex]

[tex] \rm \leadsto \: total \: volume = 376.6\: {cm}^{3} [/tex]

If we round to the nearest tenth the total volume is ᭄

[tex] \rm \twoheadrightarrow volume = 380 \: {cm}^{3} [/tex]