Never true
Simple concept see below :
Given :-
[tex] \dashrightarrow \sf ab = a[/tex]
[tex] \\ [/tex]
divide both side by a
[tex] \dashrightarrow \sf \dfrac{ab}{a} = \dfrac{a}{a} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \sf \dfrac{\cancel ab}{\cancel a} = \dfrac{a}{a} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \sf \dfrac{b}{1} = \dfrac{a}{a} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \sf b = \dfrac{a}{a} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \sf b = \cancel\dfrac{a}{a} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \sf b = \dfrac{1}{1} [/tex]
[tex] \\ [/tex]
[tex] \dashrightarrow \bf b =1[/tex]
So here given b = 3
but it's clearly visible that b = 1
.°. b ≠ 3
therefore it's never true