Can you find the Volume of the figure?

[tex] \qquad \qquad \huge\underline{\boxed{\sf{Aиswєя} } } \: \ddot \smile[/tex]
[tex] \sf \: Volume \: of \: a \: Cuboid = Length × Width × Height [/tex]
✰ Part the structure into two cuboids of dimensions :
[tex] \longrightarrow \sf 10 \: cm \times 8 \: cm \times 14 \: cm[/tex]
and
[tex] \longrightarrow \sf 10 \: cm \times 10 \: cm \times 8\: cm[/tex]
[tex] \qquad \dashrightarrow \sf {(10 \times 8 \times 14) \: cm {}^{3} }[/tex]
[tex] \qquad \dashrightarrow \sf 1120 \: cm {}^{3} [/tex]
[tex] \qquad \dashrightarrow \sf {(10 \times 10 \times 8) \: cm {}^{3} }[/tex]
[tex] \qquad \dashrightarrow \sf 800 \: cm {}^{3} [/tex]
[tex] \qquad \longmapsto\sf \sf{Vol \#1 + Vol \#2}[/tex]
[tex] \qquad \longmapsto\sf \sf{(1120 + 800}) \: {cm}^{3} [/tex]
[tex] \qquad \therefore\sf \:volume_{(total)} = 1920 \:cm {}^{ 3} [/tex]
[tex]\huge \dag \: \normalsize \sf \boxed{ \underline{ǤríʍɌεαƿєr}} \: \huge \dag[/tex]
Answer:
1920 cm³
Step-by-step explanation:
The volume of a cuboid is the product of its dimensions:
V = LWH
__
These two cuboids have the same width and depth, so can be stacked on top of each other to give a cuboid with the dimensions ...
(14 +10) = 24 cm high
8 cm deep
10 cm wide
Then the volume is ...
V = LWH = (8 cm)(10 cm)(24 cm) = 1920 cm³
The total volume is 1920 cubic centimeters.