Respuesta :

[tex] \qquad \qquad \huge\underline{\boxed{\sf{Aиswєя} } } \: \ddot \smile[/tex]

↬ What we need to know before we solve :

[tex] \sf \: Volume \: of \: a \: Cuboid = Length × Width × Height [/tex]

✦ Now, let's proceed further ~

✰ Part the structure into two cuboids of dimensions :

[tex] \longrightarrow \sf 10 \: cm \times 8 \: cm \times 14 \: cm[/tex]

and

[tex] \longrightarrow \sf 10 \: cm \times 10 \: cm \times 8\: cm[/tex]

✦ Find out volume of each cuboid

Cuвσíd #1

[tex] \qquad \dashrightarrow \sf {(10 \times 8 \times 14) \: cm {}^{3} }[/tex]

[tex] \qquad \dashrightarrow \sf 1120 \: cm {}^{3} [/tex]

Cuвσíd #2

[tex] \qquad \dashrightarrow \sf {(10 \times 10 \times 8) \: cm {}^{3} }[/tex]

[tex] \qquad \dashrightarrow \sf 800 \: cm {}^{3} [/tex]

➳ Aѕ wє cαn ѕєє, vσlumє σf thє whσlє fígurє íѕ :

[tex] \qquad \longmapsto\sf \sf{Vol \#1 + Vol \#2}[/tex]

[tex] \qquad \longmapsto\sf \sf{(1120 + 800}) \: {cm}^{3} [/tex]

[tex] \qquad \therefore\sf \:volume_{(total)} = 1920 \:cm {}^{ 3} [/tex]

[tex]\huge \dag \: \normalsize \sf \boxed{ \underline{ǤríʍɌεαƿєr}} \: \huge \dag[/tex]

Answer:

  1920 cm³

Step-by-step explanation:

The volume of a cuboid is the product of its dimensions:

  V = LWH

__

These two cuboids have the same width and depth, so can be stacked on top of each other to give a cuboid with the dimensions ...

  (14 +10) = 24 cm high

  8 cm deep

  10 cm wide

Then the volume is ...

  V = LWH = (8 cm)(10 cm)(24 cm) = 1920 cm³

The total volume is 1920 cubic centimeters.

Otras preguntas