Solve the equation and keep it in exponent-based form.

Answer:
Step-by-step explanation:
Anything raised to zero = 1
[tex]a^{0} = 1\\\\a^{m}*a^{n} =a^{m+n}\\\\\dfrac{a^{m}}{a^{n}}=a^{m- n}\\[/tex]
In exponent multiplication, if base are same, just add the powers.
In exponent division, if bases are same, subtract the powers.
[tex](a^{m})^{n} =a^{m*n}[/tex]
[tex](3^{-2}* 4^{-5}*5^{0})^{-3} * \left(\dfrac{4^{-4}}{3^{3}} \right)^{3}*3^{3} \\\\\\= (3^{-2}* 4^{-5}*1)^{-3} * \left(\dfrac{4^{-4}}{3^{3}} \right)^{3}*3^{3}\\\\\\= 3^{-2*(-3)} *4^{-5*(-3)} * \dfrac{4^{-4*3}}{3^{3*3}}*3^{3}\\\\\\=3^{6}*4^{15}*\dfrac{4^{-12}}{3^{9}}*3^{3}\\\\\\= 3^{6+3-9}* 4^{15+(-12)}\\\\=3^{0}*4^{3}\\\\=1*4^{3}\\\\=4^{3}[/tex]