Respuesta :
Answer:
75°
Step-by-step explanation:
- The sum of interior angles of a triangle is 180°
- Right angle = 90°
- Acute angle is an angle that measures less than 90°
Let x = unknown angle
Therefore, if a right triangle has one angle that measures 15°:
⇒ x + 15 + 90 = 180
⇒ x + 105 = 180
⇒ x = 180 - 105
⇒ x = 75°
[tex] \bigstar \underline\frak{Required \: Solution}[/tex]
[tex] \\ [/tex]
Given :-
- Triangle is a right triangle
- One angle of triangle = 15°
[tex] \\ \\ [/tex]
To find :-
- Left angle of triangle.
[tex] \\ \\ [/tex]
So first you should know what is right triangle ?
A triangle which has one angle as 90° and other two angles are acute angle.
[tex] \\ [/tex]
So we get know that one angle of triangle is 90°
Now :-
[tex] \star \boxed{\angle 1 + \angle 2 + \angle 3 = 180\degree}[/tex]
Reason :-
Sum of angles of triangle is equal to 180°
Formula :-
- sum = (no. of angles - 2) × 180°
- Sum = (3 - 2) × 180°
- Sum = 1 × 180°
- Sum = 189°
[tex] \\ \\ [/tex]
Steps to find left angle :-
[tex] \\ [/tex]
[tex] \sf\dashrightarrow\angle 1 + \angle 2 + \angle 3 = 180\degree[/tex]
[tex] \\ \\ [/tex]
[tex] \sf\dashrightarrow90 + 15 + \angle 3 = 180\degree[/tex]
[tex] \\ \\ [/tex]
[tex] \sf\dashrightarrow105 + \angle 3 = 180\degree[/tex]
[tex] \\ \\ [/tex]
[tex] \sf\dashrightarrow\angle 3 = 180\degree - 105 \degree[/tex]
[tex] \\ \\ [/tex]
[tex] \bf\dashrightarrow\angle 3 = 75\degree[/tex]
[tex] \\ \\ [/tex]
.°. measurement of left angle is 75°