Respuesta :

Answer:

  • a = 10.724
  • b = 8.988
  • A = 40°

Step-by-step explanation:

Here we are given with a right angled traingle and we are interested in finding

  • Angle A
  • side “ a ”
  • side “ b ”

Firstly we can use the ratio of sine to find the side a , as ;

[tex]\longrightarrow \sin\theta =\dfrac{p}{h} [/tex]

Substituting the respective values,

[tex]\longrightarrow \sin50^\circ =\dfrac{a}{14} [/tex]

Put on the value of sin50° = 0.766 ;

[tex]\longrightarrow 0.766 =\dfrac{a}{14} [/tex]

Cross multiply ,

[tex]\longrightarrow a = 14\times 0.766[/tex]

Simplify,

[tex]\longrightarrow \underline{\underline{\boldsymbol{ a = 10.724 \approx 10.8}}} [/tex]

____________________________

Now for finding b , we may use the ratio of cosine as ,

[tex]\longrightarrow \cos\theta =\dfrac{b}{h}[/tex]

Substituting the respective values,

[tex]\longrightarrow \cos50^\circ =\dfrac{b}{14}[/tex]

Put on the value of cos50° = 0.642 ;

[tex]\longrightarrow 0.642 =\dfrac{b}{14} [/tex]

Cross multiply,

[tex]\longrightarrow b =14\times 0.642[/tex]

Simplify,

[tex]\longrightarrow \underline{\underline{\boldsymbol{ b = 8.988 \approx 9}}}[/tex]

______________________________

Again we know that the sum of three angles of a triangle is 180° . So that;

[tex]\longrightarrow A +50^\circ +90^\circ =180^\circ [/tex]

Solve for A ,

[tex]\longrightarrow A =180^\circ -140^\circ[/tex]

[tex]\longrightarrow \underline{\underline{\boldsymbol{ A = 40^\circ }}}[/tex]

And we are done!