Find the values of x and y.

[tex]\bold{\huge{\underline{ Solution }}}[/tex]
Let consider the given triangle be ABC
According to the question,
AD is the median of the triangle ABC and CE also divides the triangle into two parts. At F both the lines are intersecting.
Here We have ,
In triangle FDC, By using Angle sum property
[tex]\sf{ {\angle}FDC + {\angle}DCF + {\angle}CFD = 180{\degree}}[/tex]
Subsitute the required values,
[tex]\sf{ 90{\degree} + 20{\degree} + {\angle}CFD = 180{\degree}}[/tex]
[tex]\sf{ 110{\degree} + {\angle}CFD = 180{\degree}}[/tex]
[tex]\sf{ {\angle}CFD = 180{\degree} - 110{\degree}}[/tex]
[tex]\sf{ {\angle}CFD = 70{\degree}}[/tex]
Here.
[tex]\sf{ {\angle}AEF + {\angle}EFA + {\angle}FAE = 180{\degree}}[/tex]
Subsitute the required values,
[tex]\sf{ x{\degree} + 70{\degree} + 25{\degree} = 180{\degree}}[/tex]
[tex]\sf{ x{\degree} + 95{\degree}= 180{\degree}}[/tex]
[tex]\sf{ x{\degree} = 180{\degree} - 95{\degree}}[/tex]
[tex]\bold{ x = 85{\degree}}[/tex]
Thus , The value of x is 85°
So ,
[tex]\sf{ {\angle}AEF + {\angle}FEB = 180{\degree}}[/tex]
[tex]\sf{ 85{\degree} + {\angle}FEB = 180{\degree}}[/tex]
[tex]\sf{ {\angle}FEB = 180{\degree} - 85{\degree}}[/tex]
[tex]\sf{ {\angle}FEB = 95{\degree}}[/tex]
Similarly ,
[tex]\sf{ {\angle}AFE + {\angle}DFE = 180{\degree}}[/tex]
[tex]\sf{ 70{\degree} + {\angle}DFE = 180{\degree}}[/tex]
[tex]\sf{ {\angle}DFE = 180{\degree} - 70{\degree}}[/tex]
[tex]\sf{ {\angle}DFE = 110 {\degree}}[/tex]
That is ,
[tex]\sf{ {\angle}FEB + {\angle}EBD + {\angle}BDF + {\angle} DFE = 360{\degree}}[/tex]
Subsitute the required values,
[tex]\sf{ 95{\degree} + y{\degree} + 90{\degree} + + 110{\degree} = 360{\degree}}[/tex]
[tex]\sf{ y{\degree} + 295{\degree}= 180{\degree}}[/tex]
[tex]\sf{ y {\degree} = 360{\degree} - 295{\degree}}[/tex]
[tex]\bold{ y = 65{\degree}}[/tex]
Hence, The value of x and y is 70° and 65° .