trapezoid has a height of 10 centimeters. One parallel base has a length of 7 centimeters, and the other parallel base has a length of 13 centimeters. What is the area of the trapezoid?​

Respuesta :

Step-by-step explanation:

The area of the trapezium.

We are here provided with height and two parallel bases of trapezium and we are interested in finding out the area of the trapezium.

As we know that,

\implies\sf \red{Area_{trapezium}= \dfrac{1}{2}\times (sum\ of \ parallel\ sides )\times height}⟹Areatrapezium=21×(sum of parallel sides)×height

On substituting the respective values,

\begin{gathered}\sf: \implies Area =\dfrac{1}{2}\times (7cm +13cm)\times 10cm \\ \end{gathered}:⟹Area=21×(7cm+13cm)×10cm

\begin{gathered}\sf : \implies Area = 20cm \times 5cm \\\end{gathered}:⟹Area=20cm×5cm

\begin{gathered}\sf : \implies \underline{\boxed{\pink{\frak{ Area = 100cm^2}}}}\\\end{gathered}:⟹Area=100cm2

\underline{\underline{\textsf{ $\therefore$Hence the area of the trapezium is \textbf{40 cm$\bf ^2$ }.}}} ∴Hence the area of the trapezium is 40 cm2 .

Answer:

area: 100 cm²

explanation:

[tex]\sf area \ of \ the \ trapezoid= \dfrac{1}{2} ( a + b ) * h[/tex]

solving steps:

[tex]\hookrightarrow \sf \frac{1}{2} ( 7 + 13) * 10[/tex]

[tex]\hookrightarrow \sf \frac{1}{2} ( 20) * 10[/tex]

[tex]\hookrightarrow \sf 10 * 10[/tex]

[tex]\hookrightarrow \sf 100[/tex]