Respuesta :
Answer:
158°F (nearest degree)
Step-by-step explanation:
Solving using Newton's Law of Cooling
Newton's Law of Cooling Formula:
[tex]T(t)=T_S+(T_0-T_S)e^{-kt}[/tex]
where:
- [tex]t[/tex] = time
- [tex]T(t)[/tex] = temperature of the water at time (t)
- [tex]T_S[/tex] = surrounding temperature
- [tex]T_0[/tex] = initial temperature of the water
- [tex]k[/tex] = constant
Given:
- [tex]T_0=204[/tex]
- [tex]T_S=73[/tex]
- T(t) = 188 when t = 1.5m
Substituting given values into the formula and solve for k:
[tex]\implies 188=73+(204-73)e^{-1.5k}[/tex]
[tex]\implies \dfrac{115}{131}=e^{-1.5k}[/tex]
[tex]\implies \ln\dfrac{115}{131}={-1.5k[/tex]
[tex]\implies k=-\dfrac23\ln\dfrac{115}{131}[/tex]
[tex]\implies k=0.087 \textsf{ (nearest thousandth)}[/tex]
So the final equation is:
[tex]T(t)=73+131e^{-0.087t}[/tex]
Therefore, when t = 5:
[tex]73+131e^{-0.087 \times 5}=157.7916714...[/tex]
= 158 °F (nearest degree)
Solving using differential equations
The temperature ([tex]\theta[/tex]) of the cup of water will decrease proportionally to the difference between the temperature of the water ([tex]\theta[/tex]) and the temperature of the room (73°F):
[tex]\dfrac{d\theta}{dt} \propto(\theta-73)[/tex]
Change this to an equation by introducing a constant k. As the rate of change of temperature is decreasing, we need to introduce a negative sign:
[tex]\implies \dfrac{d\theta}{dt}=-k(\theta-73)[/tex]
Now solve the differential equation:
[tex]\int\limits {\left(\dfrac{1}{\theta-73}\right) \, d\theta =\int\limits {(-k)} \, dt[/tex]
[tex]\ln|\theta-73|=-kt+C[/tex]
To find the constants k and C, use the given conditions:
- [tex]t=0, \theta=204 \textdegree F[/tex]
[tex]\implies \ln|204-73|=-k(0)+C[/tex]
[tex]\implies \ln131=C[/tex]
[tex]\implies \ln|\theta-73|=-kt+\ln131[/tex]
- [tex]t=1.5, \theta=188 \textdegree F[/tex]
[tex]\implies \ln|188-73|=-k(1.5)+\ln131[/tex]
[tex]\implies \ln115=-1.5k+\ln131[/tex]
[tex]\implies \ln115-\ln131=-1.5k[/tex]
[tex]\implies -\dfrac23\ln\left(\dfrac{115}{131}\right)=k[/tex]
Therefore, final equation:
[tex]\implies \ln|\theta-73|=\dfrac23\ln\left(\dfrac{115}{131}\right)t+\ln131[/tex]
When t = 5:
[tex]\implies \ln|\theta-73|=\dfrac23\ln\left(\dfrac{115}{131}\right)(5)+\ln131[/tex]
[tex]\implies \ln|\theta-73|=4.440980007...[/tex]
[tex]\implies \theta-73=e^{4.440980007...}[/tex]
[tex]\implies \theta-73=84.85806244...[/tex]
[tex]\implies \theta=84.85806244...+73[/tex]
[tex]\implies \theta=157.8580624...[/tex]
[tex]\implies \theta=158 \textdegree \textsf{F (nearest degree)}[/tex]