Respuesta :

Recurrence is used for repetitive and iterative functions

The recurrence is [tex]T_n = O(n)[/tex]

How to determine the recurrence

The recurrence relation is defined as:

[tex]T_n = 1 + T_{n/2} + T_{n/2}[/tex]

Rewrite the expression as:

[tex]T_n = 1 + 2T_{n/2}[/tex]

The master theorem of recurrence states that:

[tex]T_n = f(n) + aT_{n/b}[/tex]

By comparison, we have:

[tex]f(n) = 1[/tex]

[tex]a = 2[/tex]

[tex]b = 2[/tex]

Where:

[tex]2^k = f(n)[/tex]

So, we have:

[tex]2^k = 1[/tex]

Express 1 as 2^0

[tex]2^k = 2^0[/tex]

By comparison,

[tex]k = 0[/tex]

Next, we test the relation using:

[tex]a > b^k[/tex]

So, we have:

[tex]a > b^0[/tex]

[tex]a >1[/tex]

Recall that a = 2

So, we have:

[tex]2 >1[/tex]

The above inequality is true

So, we have:

[tex]T_n = O(n^{\log_ab})[/tex]

This gives

[tex]T_n = O(n^{\log_22})[/tex]

Evaluate the logarithmic expression

[tex]T_n = O(n^{1})[/tex]

[tex]T_n = O(n)[/tex]

Hence, the recurrence is [tex]T_n = O(n)[/tex]

Read more about recurrence at:

https://brainly.com/question/1275192