Respuesta :

Start on the left side.cot(t)+sin(t)1cos(t)-⁢cott+sint1-⁢costMultiply sin(t)1cos(t)sint1-⁢cost by 1+cos(t)1+cos(t)1+cost1+cost.cot(t)+sin(t)1cos(t)1+cos(t)1+cos(t)-⁢cott+sint1-⁢cost1+cost1+costCombine.cot(t)+sin(t)(1+cos(t))(1cos(tcot(t)+sin(t)+sin(t)cos(t)(1cos(t))(1+cos(t))-⁢cott+sint+sintcost1-⁢cost1+cost))(1+cos(t))
cot(t)+sin(t)+sin(t)cos(t)1cos2(t)-⁢cott+sint+sintcost1-⁢cos2tApply pythagorean identity.cot(t)+sin(t)+sin(t)cos(t)sin2(t)-⁢cott+sint+sintcostsin2tWrite cot(t)cott in sines and cosines using the quotient identity.cos(t)sin(t)+sin(t)+sin(t)cos(t)sin2(t)-⁢costsint+sint+sintcostsin2tSimplify.1sin(t)1sintRewrite 1sin(t)1sint as csc(t)csct.csc(t)csctBecause the two sides have been shown to be equivalent, the equation is an identity.cot(t)+sin(t)1cos(t)=csc(t)-⁢cott+sint1-⁢cost=csct is an identity