Respuesta :
More generally, you have after [tex]h[/tex] seconds
[tex]\dfrac{y(2+h)-y(2)}{(2+h)-2}=\dfrac{52(2+h)-16(2+h)^2-104-64}h=\dfrac{-12h-16h^2}h=-12-16h[/tex]
After [tex]h=0.5[/tex] second, the average velocity is [tex]-12-16\times0.5=-20[/tex].
I'm sure you can do the rest on your own.
[tex]\dfrac{y(2+h)-y(2)}{(2+h)-2}=\dfrac{52(2+h)-16(2+h)^2-104-64}h=\dfrac{-12h-16h^2}h=-12-16h[/tex]
After [tex]h=0.5[/tex] second, the average velocity is [tex]-12-16\times0.5=-20[/tex].
I'm sure you can do the rest on your own.
Answer:
(i) [tex]m=-20[/tex]
(ii) [tex]m=-13.6[/tex]
(iii) [tex]m=-12.8[/tex]
(iv) [tex]m=-12.16[/tex]
Step-by-step explanation:
The given function is
[tex]y=52t-16t^2[/tex]
where, h is the height of ball after t seconds.
It can be written as
[tex]f(t)=52t-16t^2[/tex]
At x=2,
[tex]f(2)=52(2)-16(2)^2=40[/tex]
The average of a function f(x) on [a,b] is
[tex]m=\frac{f(b)-f(a)}{b-a}[/tex]
The time period beginning when t = 2 and lasting with h.
[tex]m=\frac{f(2+h)-f(2)}{2+h-2}[/tex]
[tex]m=\frac{f(2+h)-40}{h}[/tex]
(i)
Here, h = 0.5 second
[tex]m=\frac{f(2+0.5)-40}{0.5}[/tex]
[tex]m=\frac{f(2.5)-40}{0.5}[/tex]
[tex]m=\frac{30-40}{0.5}[/tex]
[tex]m=-20[/tex]
(ii)
Here, h = 0.1 second
[tex]m=\frac{f(2+0.1)-40}{0.1}[/tex]
[tex]m=\frac{f(2.1)-40}{0.1}[/tex]
[tex]m=\frac{38.64-40}{0.1}[/tex]
[tex]m=-13.6[/tex]
(iii)
Here, h = 0.05 second
[tex]m=\frac{f(2+0.05)-40}{0.05}[/tex]
[tex]m=\frac{f(2.05)-40}{0.05}[/tex]
[tex]m=\frac{39.36-40}{0.05}[/tex]
[tex]m=-12.8[/tex]
(iv)
Here, h = 0.01 second
[tex]m=\frac{f(2+0.1)-40}{0.01}[/tex]
[tex]m=\frac{f(2.01)-40}{0.01}[/tex]
[tex]m=\frac{39.8784-40}{0.01}[/tex]
[tex]m=-12.16[/tex]