Respuesta :
Answer:
Option A is correct.
The expression which is equivalent to [tex]\frac{1}{3}(5x+3y)+\frac{2}{5}y +7[/tex] is, [tex]\frac{5}{3}x + \frac{7}{5}y + 7[/tex]
Step-by-step explanation:
Given the expression: [tex]\frac{1}{3}(5x+3y)+\frac{2}{5}y +7[/tex]
The distributive says that:
[tex]a\cdot(b+c) = a\cdot b+ a\cdot c[/tex]
Apply distributive property on [1] we have;
[tex]\frac{5}{3}x + y + \frac{2}{5}y + 7[/tex]
Like terms are those terms which have same variables to the same power.
Combine like terms, we have;
[tex]\frac{5}{3}x + \frac{7}{5}y + 7[/tex]
Therefore, the expression which is equivalent to [tex]\frac{1}{3}(5x+3y)+\frac{2}{5}y +7[/tex] is, [tex]\frac{5}{3}x + \frac{7}{5}y + 7[/tex]