Data:
[tex]E_{pe} = 5184J[/tex]
[tex]K(constant) = 16200N/m[/tex]
[tex]x(displacement) = ?[/tex]
For a spring (or an elastic), the elastic potential energy is calculated by the following expression:
[tex] E_{pe} = \frac{k*x^2}{2} [/tex]
Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:
[tex] E_{pe} = \frac{k*x^2}{2} [/tex]
[tex] 5184 = \frac{16200*x^2}{2} [/tex]
[tex]5184*2 = 16200*x^2[/tex]
[tex]10368 = 16200x^2[/tex]
[tex]16200x^2 = 10368[/tex]
[tex] x^{2} = \frac{10368}{16200} [/tex]
[tex] x^{2} = 0.64[/tex]
[tex]x = \sqrt{0.64} [/tex]
[tex]\boxed{\boxed{x = 0.8m}}[/tex]
Answer:
The displacement of the spring = 0.8m