Use the given transformation to evaluate the integral. (x − 6y) da, r where r is the triangular region with vertices (0, 0), (5, 1), and (1, 5). X = 5u + v, y = u + 5v.

Respuesta :

Under the given transformation, the corresponding vertices of R in the (u,v)-plane are

• x = 0, y = 0   ===>   u = 0, v = 0

• x = 5, y = 1   ===>   u = 1, v = 0

• x = 1, y = 5   ===>   u = 0, v = 1

so that R is transformed into an isosceles right triangle given by the set

R' = {(u, v) : 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 - u}

The Jacobian for this transformation is

[tex]J = \begin{bmatrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{bmatrix} = \begin{bmatrix}5&1\\1&5\end{bmatrix}[/tex]

so that det(J) = 24, and the area element is

[tex]dA = dx \, dy = |\det(J)| \, du \, dv = 24 \, du \, dv[/tex]

The integral over R is then

[tex]\displaystyle \iint_R (x-6y) \, dA = 24 \iint_{R'} ((5u+v)-6(u+5v)) \, du \, dv[/tex]

[tex]\displaystyle \iint_R (x-6y) \, dA = -24 \int_0^1 \int_0^{1-u}  (u+29v) \, dv \, du[/tex]

[tex]\displaystyle \iint_R (x-6y) \, dA = -24 \int_0^1 \left(u(1-u)+\frac{29}2(1-u)^2\right) \, du[/tex]

[tex]\displaystyle \iint_R (x-6y) \, dA = -12 \int_0^1 \left(29 - 56u + 27 u^2)\right) \, du[/tex]

[tex]\displaystyle \iint_R (x-6y) \, dA = -12 \left(29 - 28 + 9\right) = \boxed{-120}[/tex]