Respuesta :
The kite is a quadrilateral that has two pairs of equal adjacent sides and
one of equal opposite angles.
5. The two column proof is presented as follows;
Statement [tex]{}[/tex] Reason
[tex]\overline{AB}[/tex] = [tex]\overline{BC}[/tex] [tex]{}[/tex] Given
[tex]\overline{AB}[/tex] ≅ [tex]\overline{BC}[/tex] [tex]{}[/tex] Definition of congruency
[tex]\overline{AD}[/tex] = [tex]\overline{CD}[/tex] [tex]{}[/tex] Given
[tex]\overline{AD}[/tex] ≅ [tex]\overline{CD}[/tex] [tex]{}[/tex] Definition of congruency
[tex]\overline{BD}[/tex] ≅ [tex]\overline{BD}[/tex] [tex]{}[/tex] By reflexive property
ΔABD ≅ ΔBDC [tex]{}[/tex] By Side-Side-Side, SSS congruency postulate
∠ABC = ∠ABD + ∠CBD [tex]{}[/tex] Angle addition postulate
∠ABD ≅ ∠CBD [tex]{}[/tex] CPCTC
∠ABD = ∠CBD [tex]{}[/tex] Definition of congruency
[tex]\overline{BD}[/tex] is a bisector of ∠ABC [tex]{}[/tex] Definition of angle bisector
∠ADC = ∠ABD + ∠CBD [tex]{}[/tex] Angle addition postulate
∠ABD ≅ ∠CBD [tex]{}[/tex] CPCTC
∠ABD = ∠CBD [tex]{}[/tex] Definition of congruency
Therefore;
[tex]\overline{BD}[/tex] is a bisector of ∠ADC [tex]{}[/tex] Definition of angle bisector
CPCTC is the acronym for Congruent Parts of Congruent Triangles are Congruent
6. The two column proof is presented as follows;
Statement [tex]{}[/tex] Reason
∠ABD ≅ ∠CBD [tex]{}[/tex] CPCTC (question 5)
[tex]\overline{AB}[/tex] = [tex]\overline{BC}[/tex] [tex]{}[/tex] Given
[tex]\overline{BM}[/tex] ≅ [tex]\overline{BM}[/tex] [tex]{}[/tex] Reflexive property
ΔABM ≅ ΔCBM [tex]{}[/tex] According to Side-Angle-Side, SAS congruency rule
[tex]\overline{AM}[/tex] ≅ [tex]\overline{CM}[/tex] [tex]{}[/tex] CPCTC
[tex]\overline{AM}[/tex] = [tex]\overline{CM}[/tex] [tex]{}[/tex] Definition of congruency
[tex]\overline{AC}[/tex] = [tex]\overline{AM}[/tex] + [tex]\overline{CM}[/tex] [tex]{}[/tex] Segment addition postulate
[tex]\overline{AC}[/tex] = [tex]\overline{AM}[/tex] + [tex]\overline{AM}[/tex] = 2·[tex]\overline{AM}[/tex] [tex]{}[/tex] Substitution property of equality
[tex]\overline{AM}[/tex] = 0.5·[tex]\overline{AC}[/tex] [tex]{}[/tex] Division property of equality
M divides [tex]\overline{AC}[/tex] to two [tex]{}[/tex] Definition
M is midpoint of [tex]\overline{AC}[/tex] [tex]{}[/tex] Definition of midpoint
Learn more here:
https://brainly.com/question/20644467
