yabisra
contestada

If a = 8i + j - 2k and b = 5i - 3j + k show that a) a x b = -5i - 18j - 29k b) b X a = 50 + 18j +29k​

Respuesta :

Recall the definition of the cross product with respect to the unit vectors:

i × i = j × j = k × k = 0

i × j = k

j × k = i

k × i = j

and that the product is anticommutative, so that for any two vectors u and v, we have u × v = - (v × u). (This essentially takes care of part (b).)

Now, given a = 8i + j - 2k and b = 5i - 3j + k, we have

a × b = (8i + j - 2k) × (5i - 3j + k)

a × b = 40 (i × i) + 5 (j × i) - 10 (k × i)

… … … … - 24 (i × j) - 3 (j × j) + 6 (k × j)

… … … … + 8 (i × k) + (j × k) - 2 (k × k)

a × b = - 5 (i × j) - 10 (k × i) - 24 (i × j) - 6 (j × k) - 8 (k × i) + (j × k)

a × b = - 5k - 10j - 24k - 6i - 8j + i

a × b = -5i - 18j - 29k