Linear functions are used to represent equations of straight lines
The linear equation is: [tex]\mathbf{y= - \frac{5}{8}x + 15}[/tex]
From the question (see attachment), we have:
[tex]\mathbf{(x_1,y_1) = (5,11\frac 78)}[/tex]
[tex]\mathbf{(x_2,y_2) = (8,10)}[/tex]
Calculate the slope (m) using:
[tex]\mathbf{m = \frac{y_2 - y_1}{x_2 - x_1}}[/tex]
So, we have:
[tex]\mathbf{m = \frac{10 - 11\frac{7}{8}}{8-5}}[/tex]
[tex]\mathbf{m = \frac{- 1\frac{7}{8}}{3}}[/tex]
Express as improper fraction
[tex]\mathbf{m =- \frac{15/8}{3}}[/tex]
[tex]\mathbf{m =- \frac{5}{8}}[/tex]
The equation is then calculated as:
[tex]\mathbf{y= m(x -x_1)+ y_1}[/tex]
So, we have:
[tex]\mathbf{y= - \frac{5}{8}(x - 8) + 10}[/tex]
[tex]\mathbf{y= - \frac{5}{8}x + 5 + 10}[/tex]
[tex]\mathbf{y= - \frac{5}{8}x + 15}[/tex]
Hence, the linear equation is: [tex]\mathbf{y= - \frac{5}{8}x + 15}[/tex]
Read more about linear equations at:
https://brainly.com/question/11897796