In the given figure, find the value of x and y ?

Answer:
[tex]40 \degree + 107\degree + x\degree = 180\degree \\ x\degree = 180\degree - 147\degree \\ x\degree = 33\degree \\ 33\degree + 65\degree + y\degree = 180\degree \\ y\degree = 180\degree - 98\degree \\ y\degree = 82\degree[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
In triangle ADC
Now,
We know that, Sum of all interior angles of a triangle is supplementary.
Thus,
∠ADC + ∠DAC + ∠ACD = 180°
⇛ 40° + 107° + x° = 280°
⇛ 147° + x = 180°
⇛ x = 33°
[tex] \\ \rm\implies \:\boxed{\tt{ \angle \: ACD \: = \: 33 \degree \: }} \\ [/tex]
Now, ACE is a line.
So,
∠ACD + ∠DCB + ∠BCE = 180°
⇛ x + 65° + y = 180°
⇛ 33° + 65° + y = 180°
⇛ 98° + y = 180°
⇛ y = 180° - 98°
⇛ y = 82°
[tex] \\ \rm\implies \:\boxed{\tt{ y \: = \: 82 \degree \: }} \\ [/tex]