Respuesta :
9514 1404 393
Answer:
3
Step-by-step explanation:
If you need to, you can use your calculator to evaluate this expression. Or, you can make use of your knowledge of trig function values.
sin(150°) = sin(30°) = 1/2
tan(315°) = tan(-45°) = -tan(45°) = -1
cos(300°) = cos(-60°) = cos(60°) = 1/2
sec(360°) = sec(0°) = 1
Then the expression evaluates to ...
1/2 -(-1) +1/2 +1² = 3

Answer:
see explanation
Step-by-step explanation:
sin150° = sin(180 - 150)° = sin30°
tan315° = - tan(360 - 315)° = - tan45°
cos300° = cos(360 - 300)° = cos60°
sec²360° = [tex]\frac{1}{cos^2360}[/tex]
Then expressing the original gives
sin150° - tan315° + cos300° + sec²360°
= sin30° - (- tan45°) + cos60° + [tex]\frac{1}{cos^2360}[/tex]
Evaluate using exact values
= [tex]\frac{1}{2}[/tex] - (- 1) + [tex]\frac{1}{2}[/tex] +[tex]\frac{1}{1}[/tex]
= [tex]\frac{1}{2}[/tex] + 1 + [tex]\frac{1}{2}[/tex] + 1
= 3