Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

[tex]m\angle GHE=49^{\circ}[/tex]

Step-by-step explanation:

We have been given a paper airplane in which [tex]ABCD\cong EFGH[/tex].

Since [tex]ABCD\cong EFGH[/tex], therefore, by the definition of congruence corresponding angles of both quadrilaterals will be equal.

[tex]m\angle BAD=m\angle FEH[/tex]

[tex]m\angle B=m\angle F[/tex]

[tex]m\angle BCD=m\angle FGC[/tex]

[tex]m\angle CDA=m\angle GHE[/tex]

We know that all interior angles of quadrilateral add up-to 360 degree, so we can set an equation as:

[tex]m\angle BAD+m\angle B+m\angle BCD+m\angle CDA=360^{\circ}[/tex]

[tex]m\angle 131^{\circ}+90^{\circ}+90^{\circ}+m\angle CDA=360^{\circ}[/tex]

[tex]m\angle 311^{\circ}+m\angle CDA=360^{\circ}[/tex]

[tex]m\angle 311^{\circ}-311^{\circ}+m\angle CDA=360^{\circ}-311^{\circ}[/tex]

[tex]m\angle CDA=49^{\circ}[/tex]

Therefore, the measure of angle GHE is 49 degrees.