in the paper airplane,ABCD is congruent to EFGH, m<B=m<BCD=90 and m<BAD= 131.Find m<GHE.

Answer:
[tex]m\angle GHE=49^{\circ}[/tex]
Step-by-step explanation:
We have been given a paper airplane in which [tex]ABCD\cong EFGH[/tex].
Since [tex]ABCD\cong EFGH[/tex], therefore, by the definition of congruence corresponding angles of both quadrilaterals will be equal.
[tex]m\angle BAD=m\angle FEH[/tex]
[tex]m\angle B=m\angle F[/tex]
[tex]m\angle BCD=m\angle FGC[/tex]
[tex]m\angle CDA=m\angle GHE[/tex]
We know that all interior angles of quadrilateral add up-to 360 degree, so we can set an equation as:
[tex]m\angle BAD+m\angle B+m\angle BCD+m\angle CDA=360^{\circ}[/tex]
[tex]m\angle 131^{\circ}+90^{\circ}+90^{\circ}+m\angle CDA=360^{\circ}[/tex]
[tex]m\angle 311^{\circ}+m\angle CDA=360^{\circ}[/tex]
[tex]m\angle 311^{\circ}-311^{\circ}+m\angle CDA=360^{\circ}-311^{\circ}[/tex]
[tex]m\angle CDA=49^{\circ}[/tex]
Therefore, the measure of angle GHE is 49 degrees.