Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

[tex]f^{-1}(x)=\frac{\log(\frac{x}{50000})}{\log 0.8}[/tex]

Step-by-step explanation:

Given : The function [tex]f(x)=50000(0.8)^x[/tex]

To find : The inverse of the given function?

Solution :

We write the given function as,

[tex]y=50000(0.8)^x[/tex]

Taking log both side,

[tex]\log y=\log 50000+\log (0.8)^x[/tex]

Apply logarithmic property, [tex]\log a^x=x\log a[/tex]

[tex]\log y=\log 50000+x\log 0.8[/tex]

[tex]x=\frac{\log y-\log 50000}{\log 0.8}[/tex]

Now, interchange the value of x and y

[tex]y=\frac{\log x-\log 50000}{\log 0.8}[/tex]

[tex]f^{-1}(x)=\frac{\log x-\log 50000}{\log 0.8}[/tex]

[tex]f^{-1}(x)=\frac{\log(\frac{x}{50000})}{\log 0.8}[/tex]