Identify the translation rule on a coordinate plane that verifies that triangle A(-5,1), B(-2,7), C(0,1) and triangle A'(-3,2), B'(0,8), C'(2,2) are congruent

Respuesta :

B would be it i think

we know that

Translations of geometric figures in the coordinate plane can be determined by translating the x- and y-coordinates of points. The translation is an isometric transformation (not changes the size of the figure)

so

vertex [tex] A(-5,1) [/tex] --------> [tex] A'(-3,2) [/tex]

Find the rule in the x-coordinate

[tex] -5+x=-3\\ x=-3+5\\ x=2 [/tex]

x--------> x+2

Find the rule in the y-coordinate

[tex] 1+y=2\\ y=2-1\\ y=1 [/tex]

y--------> y+1

The translation rule is

[tex] (x,y)------> (x+2,y+1) [/tex]

Verify vertex B

[tex] B(-2,7) [/tex]-------> [tex] (x+2,y+1) [/tex] ------> [tex] (-2+2,7+1) [/tex]--------> [tex] B'(0,8) [/tex] ------> is ok

Verify vertex C

[tex] C(0,1) [/tex]-------> [tex] (x+2,y+1) [/tex] ------> [tex] (0+2,1+1) [/tex]--------> [tex] C'(2,2) [/tex] ------> is ok

The three vertices have the same rule, therefore the triangles are congruent

the answer is

The translation rule is

[tex] (x,y)------> (x+2,y+1) [/tex]