Respuesta :

Answer:

[tex]\frac{(a-b)^2+b^2}{a^2}[/tex]

Step-by-step explanation:

Since, By the given diagram,

The side of the inner square = Distance between the points (0,b) and (a-b,0)

[tex]=\sqrt{(a-b-0)^2+(0-b)^2}[/tex]

[tex]=\sqrt{(a-b)^2+b^2}[/tex]

Thus the area of the inner square = (side)²

[tex]=(\sqrt{(a-b)^2+b^2})^2[/tex]

[tex]=(a-b)^2+b^2\text{ square cm}[/tex]

Now, the side of the outer square = Distance between the points (0,0) and (a,0),

[tex]=\sqrt{(a-0)^2+0^2}[/tex]

[tex]=\sqrt{a^2}=a[/tex]

Thus, the area of the outer square = (side)²

[tex]=a^2\text{ square cm}[/tex]

Hence, the ratio of the area of the inner square to the area of the outer square

[tex]=\frac{(a-b)^2+b^2}{a^2}[/tex]

Answer:

I got this fraction:

frac{(a-b)^2+b^2}{a^2}

(I got the answer correct)

Hope this is helpful :)

Step-by-step explanation: