Respuesta :
Using function concepts, it is found that:
- a) The y-intercept is y = 2.5.
- b) The horizontal asymptote is x = 3.
- c) The function is decreasing.
- d) The domain is [tex](-\infty,\infty)[/tex] and the range is [tex](-\infty,3)[/tex].
- e) The graph is given at the end of the answer.
------------------------------------
The given function is:
[tex]g(x) = 3 - 8\left(\frac{1}{4}\right)^{2-x}[/tex]
------------------------------------
Question a:
The y-intercept is g(0), thus:
[tex]g(0) = 3 - 8\left(\frac{1}{4}\right)^{2-0} = 3 - 8\left(\frac{1}{4}\right)^{2} = 3 - \frac{8}{16} = 3 - 0.5 = 2.5[/tex]
The y-intercept is y = 2.5.
------------------------------------
Question b:
The horizontal asymptote is the limit of the function when x goes to infinity, if it exists.
[tex]\lim_{x \rightarrow -\infty} g(x) = \lim_{x \rightarrow -\infty} 3 - 8\left(\frac{1}{4}\right)^{2-x} = 3 - 8\left(\frac{1}{4}\right)^{2+\infty} = 3 - 8\left(\frac{1}{4}\right)^{\infty} = 3 - 8\frac{1^{\infty}}{4^{\infty}} = 3 -0 = 3[/tex]
--------------------------------------------------
[tex]\lim_{x \rightarrow \infty} g(x) = \lim_{x \rightarrow \infty} 3 - 8\left(\frac{1}{4}\right)^{2-x} = 3 - 8\left(\frac{1}{4}\right)^{2-\infty} = 3 - 8\left(\frac{1}{4}\right)^{-\infty} = 3 - 8\times 4^{\infty} = 3 - \infty = -\infty[/tex]
Thus, the horizontal asymptote is x = 3.
--------------------------------------------------
Question c:
The limit of x going to infinity of the function is negative infinity, which means that the function is decreasing.
--------------------------------------------------
Question d:
- Exponential function has no restrictions in the domain, so it is all real values, that is [tex](-\infty,\infty)[/tex].
- From the limits in item c, the range is: [tex](-\infty,3)[/tex]
--------------------------------------------------
The sketching of the graph is given appended at the end of this answer.
A similar problem is given at https://brainly.com/question/16533631
