for the function g(x)=3-8(1/4)^2-x

a) State the y-intercept

b) State the equation of the horizontal asymptote

c) State whether the function is increasing or decreasing.

d) State the domain and range
e) Sketch the graph

Could anyone help?

Respuesta :

Using function concepts, it is found that:

  • a) The y-intercept is y = 2.5.
  • b) The horizontal asymptote is x = 3.
  • c) The function is decreasing.
  • d) The domain is [tex](-\infty,\infty)[/tex] and the range is [tex](-\infty,3)[/tex].
  • e) The graph is given at the end of the answer.

------------------------------------

The given function is:

[tex]g(x) = 3 - 8\left(\frac{1}{4}\right)^{2-x}[/tex]

------------------------------------

Question a:

The y-intercept is g(0), thus:

[tex]g(0) = 3 - 8\left(\frac{1}{4}\right)^{2-0} = 3 - 8\left(\frac{1}{4}\right)^{2} = 3 - \frac{8}{16} = 3 - 0.5 = 2.5[/tex]

The y-intercept is y = 2.5.

------------------------------------

Question b:

The horizontal asymptote is the limit of the function when x goes to infinity, if it exists.

[tex]\lim_{x \rightarrow -\infty} g(x) = \lim_{x \rightarrow -\infty} 3 - 8\left(\frac{1}{4}\right)^{2-x} = 3 - 8\left(\frac{1}{4}\right)^{2+\infty} = 3 - 8\left(\frac{1}{4}\right)^{\infty} = 3 - 8\frac{1^{\infty}}{4^{\infty}} = 3 -0 = 3[/tex]

--------------------------------------------------

[tex]\lim_{x \rightarrow \infty} g(x) = \lim_{x \rightarrow \infty} 3 - 8\left(\frac{1}{4}\right)^{2-x} = 3 - 8\left(\frac{1}{4}\right)^{2-\infty} = 3 - 8\left(\frac{1}{4}\right)^{-\infty} = 3 - 8\times 4^{\infty} = 3 - \infty = -\infty[/tex]

Thus, the horizontal asymptote is x = 3.

--------------------------------------------------

Question c:

The limit of x going to infinity of the function is negative infinity, which means that the function is decreasing.

--------------------------------------------------

Question d:

  • Exponential function has no restrictions in the domain, so it is all real values, that is [tex](-\infty,\infty)[/tex].
  • From the limits in item c, the range is: [tex](-\infty,3)[/tex]

--------------------------------------------------

The sketching of the graph is given appended at the end of this answer.

A similar problem is given at https://brainly.com/question/16533631

Ver imagen joaobezerra