Respuesta :

Answer:

It's geometric sequence where a_1=12, q=-\dfrac{1}{2}a

1

=12,q=−

2

1

So a_n=12\cdot\left(-\dfrac{1}{2}\right)^{n-1}a

n

=12⋅(−

2

1

)

n−1

Answer:

[tex]a_{n}[/tex] = 12 [tex](-\frac{1}{2}) ^{n-1}[/tex]

Step-by-step explanation:

The nth term of a geometric sequence is

[tex]a_{n}[/tex] = a₁ [tex](r)^{n-1}[/tex]

where a₁ is the first term and r the common ratio

Here a₁ = 12 and r = [tex]\frac{a_{2} }{a_{1} }[/tex] = [tex]\frac{-6}{12}[/tex] = - [tex]\frac{1}{2}[/tex] , then

[tex]a_{n}[/tex] = 12 [tex](-\frac{1}{2}) ^{n-1}[/tex] ← explicit formula