What is the measure of MBT?

[tex]\\ \sf\longmapsto 17x-6=5x+18[/tex]
[tex]\\ \sf\longmapsto 17x-5x=18+6[/tex]
[tex]\\ \sf\longmapsto 12x=24[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{24}{12}[/tex]
[tex]\\ \sf\longmapsto x=2[/tex]
Now
[tex]\\ \sf\longmapsto \angle{MBT}[/tex]
[tex]\\ \sf\longmapsto 5x+18[/tex]
[tex]\\ \sf\longmapsto 5(2)+18[/tex]
[tex]\\ \sf\longmapsto 10+18[/tex]
[tex]\\ \sf\longmapsto 28[/tex]
Answer:
m∠MBT = 28°
Step-by-step explanation:
BN is an angle bisector. This makes ∠NBM and ∠MBT equal.
[tex]17x-6=5x+18\\12x-6=18\\12x=24\\x=2[/tex]
Finally, substitute the value for the variable.
[tex]5(2)+18\\10+18\\28[/tex]
Therefore, m∠MBT = 28°.