contestada

Manish writes the functions g(x)= 3 sqrt -x - 72 and h(x) = -(x + 72)^3
Which pair of expressions could Manish use to show that g(x) and h(x) are inverse functions?

Manish writes the functions gx 3 sqrt x 72 and hx x 723 Which pair of expressions could Manish use to show that gx and hx are inverse functions class=

Respuesta :

Answer:

[tex]\sqrt{-(x +72)^3} - 72 = -(3\sqrt x - 72 +72)^3[/tex]

Step-by-step explanation:

Given

[tex]g(x) = 3\sqrt x - 72[/tex]

[tex]h(x) = -(x +72)^3[/tex]

Required

Show that they are inverse functions

For g(x) and h(x) to be inverse, then:

[tex]g(h(x)) = h(g(x))[/tex]

We have:

[tex]g(x) = 3\sqrt x - 72[/tex]

Replace x with h(x)

[tex]g(h(x)) = 3\sqrt{h(x)} - 72[/tex]

Substitute value for h(x)

[tex]g(h(x)) = 3\sqrt{-(x +72)^3} - 72[/tex]

Similarly;

[tex]h(x) = -(x +72)^3[/tex]

Replace x with g(x)

[tex]h(g(x)) = -(g(x) +72)^3[/tex]

Substitute value for g(x)

[tex]h(g(x)) = -(3\sqrt x - 72 +72)^3[/tex]

Recall that:

[tex]g(h(x)) = h(g(x))[/tex]

So:

[tex]\sqrt{-(x +72)^3} - 72 = -(3\sqrt x - 72 +72)^3[/tex]

Its c

explanation:

on edge