help with 4b thank you.

First let's compute dx/dt
[tex]x = t - \frac{1}{t}\\\\x = t - t^{-1}\\\\\frac{dx}{dt} = \frac{d}{dt}\left(t - t^{-1}\right)\\\\\frac{dx}{dt} = 1-(-1)t^{-2}\\\\\frac{dx}{dt} = 1+\frac{1}{t^{2}}\\\\\frac{dx}{dt} = \frac{t^2}{t^{2}}+\frac{1}{t^{2}}\\\\\frac{dx}{dt} = \frac{t^2+1}{t^{2}}\\\\[/tex]
Now compute dy/dt
[tex]y = 2t + \frac{1}{t}\\\\y = 2t + t^{-1}\\\\\frac{dy}{dt} = \frac{d}{dt}\left(2t + t^{-1}\right)\\\\\frac{dy}{dt} = 2 - t^{-2}\\\\\frac{dy}{dt} = 2 - \frac{1}{t^2}\\\\\frac{dy}{dt} = \frac{2t^2}{t^2}-\frac{1}{t^2}\\\\\frac{dy}{dt} = \frac{2t^2-1}{t^2}\\\\[/tex]
From here, apply the chain rule to say
[tex]\frac{dy}{dx} = \frac{dy*dt}{dx*dt}\\\\\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}\\\\\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}\\\\\frac{dy}{dx} = \frac{2t^2-1}{t^2} \div \frac{t^2+1}{t^{2}}\\\\\frac{dy}{dx} = \frac{2t^2-1}{t^2} \times \frac{t^{2}}{t^2+1}\\\\\frac{dy}{dx} = \frac{2t^2-1}{t^2+1}\\\\[/tex]
We could use polynomial long division, or we could add 2 and subtract 2 from the numerator and do a bit of algebra like so
[tex]\frac{dy}{dx} = \frac{2t^2-1}{t^2+1}\\\\\frac{dy}{dx} = \frac{2t^2-1+2-2}{t^2+1}\\\\\frac{dy}{dx} = \frac{(2t^2+2)-1-2}{t^2+1}\\\\\frac{dy}{dx} = \frac{2(t^2+1)-3}{t^2+1}\\\\\frac{dy}{dx} = \frac{2(t^2+1)}{t^2+1}-\frac{3}{t^2+1}\\\\\frac{dy}{dx} = 2-\frac{3}{t^2+1}\\\\[/tex]
This concludes the first part of 4b
=======================================================
Now onto the second part.
Since t is nonzero, this means either t > 0 or t < 0.
If t > 0, then,
[tex]t > 0\\\\t^2 > 0\\\\t^2+1 > 1\\\\\frac{1}{t^2+1} < 1 \ \text{ ... inequality sign flip}\\\\\frac{3}{t^2+1} < 3\\\\-\frac{3}{t^2+1} > -3 \ \text{ ... inequality sign flip}\\\\-\frac{3}{t^2+1}+2 > -3 + 2\\\\2-\frac{3}{t^2+1} > -1\\\\-1 < 2-\frac{3}{t^2+1}\\\\-1 < \frac{dy}{dx}\\\\[/tex]
note the inequality signs flipping when we apply the reciprocal to both sides, and when we multiply both sides by a negative value.
You should find that the same conclusion happens when we consider t < 0. Why? Because t < 0 becomes t^2 > 0 after we square both sides. The steps are the same as shown above.
So both t > 0 and t < 0 lead to [tex]-1 < \frac{dy}{dx}[/tex]
We can say that -1 is the lower bound of dy/dx. It never reaches -1 itself because t = 0 is not allowed.
We could say that
[tex]\displaystyle \lim_{t\to0}\left(2-\frac{3}{t^2+1}\right)=-1\\\\[/tex]
---------------------------------------
To establish the upper bound, we consider what happens when t approaches either infinity.
If t approaches positive infinity, then,
[tex]\displaystyle L = \lim_{t\to\infty}\left(2-\frac{3}{t^2+1}\right)\\\\\\\displaystyle L = \lim_{t\to\infty}\left(\frac{2t^2-1}{t^2+1}\right)\\\\\\\displaystyle L = \lim_{t\to\infty}\left(\frac{2-\frac{1}{t^2}}{1+\frac{1}{t^2}}\right)\\\\\\\displaystyle L = \frac{2-0}{1+0}\\\\\\\displaystyle L = 2\\\\[/tex]
As t approaches infinity, the dy/dx value approaches L = 2 from below.
The same applies when t approaches negative infinity.
So we see that [tex]\frac{dy}{dx} < 2[/tex]
---------------------------------------
Since [tex]-1 < \frac{dy}{dx} \text{ and } \frac{dy}{dx} < 2[/tex], those two inequalities combine into the compound inequality [tex]-1 < \frac{dy}{dx} < 2[/tex]
So dy/dx is bounded between -1 and 2, exclusive of either endpoint.