Respuesta :

Answer:

[tex] g(4) = \frac{5}{11} [/tex]

Step-by-step explanation:

Given:

[tex] g(x) = \frac{x^2 - 6}{3x + 10}

Required:

g(4)

Solution:

Substitute x = 4 into [tex] g(x) = \frac{x^2 - 6}{3x + 10} [/tex]

Thus:

[tex] g(4) = \frac{4^2 - 6}{3(4) + 10} [/tex]

[tex] g(4) = \frac{16 - 6}{12 + 10} [/tex]

[tex] g(4) = \frac{10}{22} [/tex]

[tex] g(4) = \frac{5}{11} [/tex]