What is the solution of this system of linear equations?
3y = 3 y equals StartFraction 3 over 2 EndFraction x plus 6.x + 6
y – StartFraction one-half EndFraction y minus StartFraction 1 over 4 EndFraction x equals 3.x = 3

Respuesta :

Answer:

[tex]x = 4[/tex]

[tex]y = 4[/tex]

Step-by-step explanation:

Given

[tex]3y = \frac{3}{2}x + 6[/tex]

[tex]y-\frac{1}{4}x = 3[/tex]

Required

The solution

Multiply the second equation by 3

[tex]3 * [y-\frac{1}{4}x = 3][/tex]

[tex]3y-\frac{3}{4}x = 9[/tex]

Rewrite as:

[tex]3y =\frac{3}{4}x + 9[/tex]

Subtract this from the first equation

[tex][3y = \frac{3}{2}x + 6]- [3y =\frac{3}{4}x + 9][/tex]

[tex]3y - 3y = \frac{3}{2}x - \frac{3}{4}x + 6 - 9[/tex]

[tex]0 = \frac{3}{4}x -3[/tex]

Rewrite as:

[tex]\frac{3}{4}x =3[/tex]

Multiply both sides by 3/4

[tex]x =3*\frac{4}{3}[/tex]

[tex]x = 4[/tex]

Substitute [tex]x = 4[/tex] in [tex]3y = \frac{3}{2}x + 6[/tex]

[tex]3y = \frac{3}{2} * 4 + 6[/tex]

[tex]3y = 6 + 6[/tex]

[tex]3y = 12[/tex]

Divide both sides by 3

[tex]y = 4[/tex]

Answer:

C. no solution

Step-by-step explanation:

did it on edge2021