Answer:
La ecuación para la velodiad del sonido en aire esta dada por:
[tex]v = \sqrt{ \frac{\gamma*R*T}{M} }[/tex]
Resolviendo esto para T, obtenemos:
[tex]T = v^2*(\frac{M}{\gamma*R} )[/tex]
donde:
T = temperatura del aire en grados Kelvin
γ = constante adiabatica = 1.4
R = constante del gas ideal =
M = masa molar del aire = 29*10^(-3) kg/mol
Si sabemos que el primer día la velocidad es 346 m/s, tenemos:
v = 346 m/s
Ahora podemos reemplazar todos esos valores en la ecuación para T, y asi obtener:
[tex]T = (346m/s)^2*(\frac{29*10^{-3}kg/mol}{1.4* 8.31 J/mol*K} ) = 298.42 K[/tex]
Para el segundo día la velocidad es 340 m/s, entonces ese día la temperatura va a ser:
[tex]T = (340m/s)^2*(\frac{29*10^{-3}kg/mol}{1.4* 8.31 J/mol*K} ) = 288.16 K[/tex]