what is the solution for this equation?
In(x+6)-in(2x-1)=0
answers in the image!

Answer:
x=7
Step-by-step explanation:
ln(x+6)-ln(2x-1)=0
add ln(2x-1) to each side
ln(x+6) = ln(2x-1)
Raise each side to the base e
e^ln(x+6) = e^ln(2x-1)
x+6 = 2x-1
Subtract x from each side
x+6-x = 2x-1-x
6 = x-1
Add 1 to each side
6+1 = x-1+1
7=x
[tex]\boxed{\large{\bold{\textbf{\textsf{{\color{gold}{Answer \red{:)}}}}}}}}[/tex]
[tex]\sf ln(x+6)-ln(2x-1)=0\\\\\tt ln(x+6)=ln(2x-1)\\\\ \sf e^{ln(x+6)}=e^{ln(2x-1)}\\\\ \tt x+6=2x-1\\\\\sf 2x-1=6+1\\\\\bold x=7[/tex]