Respuesta :

Answer:

[tex]\angle B = 60^o[/tex]

[tex]b =17.3[/tex]

[tex]c = 20[/tex]

Step-by-step explanation:

Given

[tex]a= 15[/tex]

[tex]\angle A = 30^o[/tex]

[tex]\angle C = 90^o[/tex]

See attachment for illustration

Required

Solve the triangle

First, we calculate the measure of B

[tex]\angle A + \angle B + \angle C = 180^o[/tex] --- angles in a triangle

[tex]30^o + \angle B + 90^o = 180^o[/tex]

Collect like terms

[tex]\angle B = 180^o-90^o-30^o[/tex]

[tex]\angle B = 60^o[/tex]

Solve for (c) using sine function

[tex]\sin(30) = \frac{a}{c}[/tex]

Make c the subject

[tex]c = \frac{a}{\sin(30)}[/tex]

Substitute known values

[tex]c = \frac{10}{0.5}[/tex]

[tex]c = 20[/tex]

Solve for (b) using Pythagoras

[tex]c^2 = a^2 + b^2[/tex]

This gives:

[tex]20^2 = 10^2 + b^2[/tex]

[tex]400 = 100 + b^2[/tex]

Collect like terms

[tex]b^2 =400 - 100[/tex]

[tex]b^2 =300[/tex]

Take square roots

[tex]b =17.3[/tex]

Ver imagen MrRoyal