Respuesta :

QUESTION:- PROVE THE IDENTITY

INDENTITY->

[tex] \frac{1}{1 - \cos(A) } + \frac{1}{1 +\cos(A) } = 2 \cosec^{2} (A) [/tex]

ANSWER:-

[tex] \frac{1}{1 - \cos(A) } + \frac{1}{1 +\cos(A) } \\ \\ \\ \frac{(1 + \cos(A)) + (1 - \cos(A))}{(1 - \cos(A))(1 - \cos(A))} \\ \\\\ \frac{2}{ {1}^{2} - \cos^{2} (A) } = \frac{2}{ \sin^{2} (A) } \\\\\\ 2 \cosec^{2} (A) = 2 \cosec^{2} (A) \\ \\ \\ LHS=RHS \\ \\ HENCE \: \: \: PROVED[/tex]

djsk56

Step-by-step explanation:

1.cross multiply

2.solve the numerator and

multiply the denominator

3.the denominator comes in the formula

4.convert it and your answer is there

Ver imagen djsk56