A random sample of 11 fields of spring wheat has a mean yield of 20.2 bushels per acre and standard deviation of 5.19 bushels per acre. Determine the 99% confidence interval for the true mean yield. Assume the population is approximately normal

Respuesta :

Answer:

[tex]CI=(15.2,25.1)[/tex]

Step-by-step explanation:

From the Question We are told that

Sample size [tex]n=11[/tex]

Mean [tex]\=x =20.2[/tex]

Standard Deviation [tex]\sigma=5.19[/tex]

Generally the equation for Critical Value is mathematically given by

[tex]Critical\ value = t_{\alpha/2,(n-1)}[/tex]

[tex]Critical\ Value=t_{0.01/2,10}[/tex]

[tex]Critical\ Value=3.1693[/tex]

Generally he 99% confidence interval for the mean yield is

[tex]CI=\bar{X}\pm t_{\alpha/2,(n-1)}S/{\sqrt{n}}[/tex]

[tex]CI=20.2\pm 3.1693*5.19/{\sqrt{11}}[/tex]

[tex]CI=20.2\pm4.9595[/tex]

[tex]CI=(15.2,25.1)[/tex]