Answer:
[tex]V_z=9.1v[/tex]
[tex]V_{zo}=8.74V[/tex]
[tex]I=10mA[/tex]
[tex]R=589 ohms[/tex]
Explanation:
From the question we are told that:
Zener diode Voltage [tex]V_z=9.1-V[/tex]
Zener diode Current [tex]I_z=9 .A[/tex]
Note
[tex]rz = 40\\\\IZK= 0.5 mA[/tex]
Supply Voltage [tex]V_s=15[/tex]
Reduction Percentage [tex]P_r= 50 \%[/tex]
Generally the equation for Kirchhoff's Voltage Law is mathematically given by
[tex]V_z=V_{zo}+I_zr_z[/tex]
[tex]9.1=V_{z0}+9*10^{-3}(40)[/tex]
[tex]V_{zo}=8.74V[/tex]
Therefore
[tex]At I_z-10mA[/tex]
[tex]V_z=V_{z0}+I_zr_z[/tex]
[tex]V_z=8.74+(10*10^{-3}) (40)[/tex]
[tex]V_z=9.1v[/tex]
Generally the equation for Kirchhoff's Current Law is mathematically given by
[tex]-I+I_z+I_l=0[/tex]
[tex]I=10mA+\frac{V_z}{R_l}[/tex]
[tex]I=10mA+\frac{9.1}{0}[/tex]
[tex]I=10mA[/tex]
Therefore
[tex]R=\frac{15V-V_z}{I}[/tex]
[tex]R=\frac{15-9.1}{10*10^{-3}}[/tex]
[tex]R=589 ohms[/tex]