Respuesta :

Answer:

The percentage change is 140%

Step-by-step explanation:

Given

[tex]L= 3W_1[/tex] ---- initial dimension

[tex]W_2 = 6m[/tex] --- new width

[tex]A_2 = 45m^2[/tex] --- new dimension

Required

The percentage increment

The length remains constant because only the width is extended.

The new area is:

[tex]Area =Length * Width[/tex]

[tex]A_2=L * W_2[/tex]

Make L the subject

[tex]L = \frac{A_2}{ W_2}[/tex]

Substitute values for A and W

[tex]L = \frac{45m^2}{6m}[/tex]

[tex]L = \frac{45m}{6}[/tex]

[tex]L = 7.5m[/tex] --- this is the length of the garden

Calculate the initial width:

[tex]L= 3W_1[/tex]

Make W1 the subject

[tex]W_1 = \frac{1}{3} * L[/tex]

[tex]W_1 = \frac{1}{3} * 7.5[/tex]

[tex]W_1 = 2.5[/tex]

So, the initial area is:

[tex]A_1 = L_1 * W_1[/tex]

[tex]A_1 = 2.5 * 7.5[/tex]

[tex]A_1 = 18.75[/tex]

The percentage change in area is:

[tex]\%A = \frac{A_2 - A_1}{A_1}[/tex]

[tex]\%A = \frac{45 - 18.75}{18.75}[/tex]

[tex]\%A = \frac{26.25}{18.75}[/tex]

[tex]\%A = 1.4[/tex]

Express as percentage

[tex]\%A = 1.4*100\%[/tex]

[tex]\%A = 140\%[/tex]