The same exponential growth function can be written in the forms y() - yo e t, y(t)- yo(1 r, and y) yo2 2. Write k as a function of r, r as a function of T2, and T2 as a function of k Write k as a function of r. k(r)-

Respuesta :

Answer:

[tex](a)\ k(r) = \ln(1+r)[/tex]

[tex](b)\ r(T_2) = 2^{1/T_2}-1[/tex]

[tex](c)\ T_2(k) = \frac{\ln(2)}{k}[/tex]

Step-by-step explanation:

Given

[tex]y(t) = y_0e^{kt}[/tex]

[tex]y(t) = y_0(1+r)^t[/tex]

[tex]y(t) = y_02^{t/T_2}[/tex]

Solving (a): k(r)

Equate [tex]y(t) = y_0e^{kt}[/tex] and [tex]y(t) = y_0(1+r)^t[/tex]

[tex]y_0e^{kt} = y_0(1+r)^t[/tex]

Cancel out common terms

[tex]e^{kt} = (1+r)^t[/tex]

Take ln of both sides

[tex]\ln(e^{kt}) = \ln((1+r)^t)[/tex]

Rewrite as:

[tex]kt\ln(e) = t\ln(1+r)[/tex]

Divide both sides by t

[tex]k = \ln(1+r)[/tex]

Hence:

[tex]k(r) = \ln(1+r)[/tex]

Solving (b): r(T2)

Equate [tex]y(t) = y_02^{t/T_2}[/tex] and [tex]y(t) = y_0(1+r)^t[/tex]

[tex]y_0(1+r)^t = y_02^{t/T_2}[/tex]

Cancel out common terms

[tex](1+r)^t = 2^{t/T_2}[/tex]

Take t th root of both sides

[tex](1+r)^{t*1/t} = 2^{t/T_2*1/t}[/tex]

[tex]1+r = 2^{1/T_2}[/tex]

Make r the subject

[tex]r = 2^{1/T_2}-1[/tex]

Hence:

[tex]r(T_2) = 2^{1/T_2}-1[/tex]

Solving (c): T2(k)

Equate [tex]y(t) = y_02^{t/T_2}[/tex] and [tex]y(t) = y_0e^{kt}[/tex]

[tex]y_02^{t/T_2} = y_0e^{kt}[/tex]

Cancel out common terms

[tex]2^{t/T_2} = e^{kt}[/tex]

Take ln of both sides

[tex]\ln(2^{t/T_2}) = \ln(e^{kt})[/tex]

Rewrite as:

[tex]\frac{t}{T_2} * \ln(2) = kt\ln(e)[/tex]

[tex]\frac{t}{T_2} * \ln(2) = kt*1[/tex]

[tex]\frac{t}{T_2} * \ln(2) = kt[/tex]

Divide both sides by t

[tex]\frac{1}{T_2} * \ln(2) = k[/tex]

Cross multiply

[tex]kT_2 = \ln(2)[/tex]

Make T2 the subject

[tex]T_2 = \frac{\ln(2)}{k}[/tex]

Hence:

[tex]T_2(k) = \frac{\ln(2)}{k}[/tex]

Otras preguntas